cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos.
نویسندگان
چکیده
The dorsoventral pattern of the Drosophila embryo is mediated by a gradient of nuclear localization of the dorsal protein which acts as a morphogen. Establishment of the nuclear concentration gradient of dorsal protein requires the activities of the 10 maternal 'dorsal group' genes whose function results in the positive regulation of the nuclear uptake of the dorsal protein. Here we show that in contrast to the dorsal group genes, the maternal gene cactus acts as a negative regulator of the nuclear localization of the dorsal protein. While loss of function mutations of any of the dorsal group genes lead to dorsalized embryos, loss of cactus function results in a ventralization of the body pattern. Progressive loss of maternal cactus activity causes progressive loss of dorsal pattern elements accompanied by the expansion of ventrolateral and ventral anlagen. However, embryos still retain dorsoventral polarity, even if derived from germline clones using the strongest available, zygotic lethal cactus alleles. In contrast to the loss-of-function alleles, gain-of-function alleles of cactus cause a dorsalization of the embryonic pattern. Genetic studies indicate that they are not overproducers of normal activity, but rather synthesize products with altered function. Epistatic relationships of cactus with dorsal group genes were investigated by double mutant analysis. The dorsalized phenotype of the dorsal mutation is unchanged upon loss of cactus activity. This result implies that cactus acts via dorsal and has no independent morphogen function. In all other dorsal group mutant backgrounds, reduction of cactus function leads to embryos that express ventrolateral pattern elements and have increased nuclear uptake of the dorsal protein at all positions along the dorsoventral axis. Thus, the cactus gene product can prevent nuclear transport of dorsal protein in the absence of function of the dorsal group genes. Genetic and cytoplasmic transplantation studies suggest that the cactus product is evenly distributed along the dorsoventral axis. Thus the inhibitory function that cactus product exerts on the nuclear transport of the dorsal protein appears to be antagonized on the ventral side. We discuss models of how the action of the dorsal group genes might counteract the cactus function ventrally.
منابع مشابه
A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo.
The dorsoventral axis of the Drosophila embryo is determined by a morphogen gradient established by the action of 12 maternal-effect genes: the dorsal group genes and cactus. One of the dorsal group genes, dorsal (dl), encodes the putative morphogen. Although no overall asymmetry in the distribution of dorsal protein is observed, a gradient of nuclear concentration of dl protein is established ...
متن کاملA gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila
Dorsoventral axis formation in the Drosophila embryo is established by a signal transduction pathway that comprises the products of at least 12 maternal genes. Two of these genes, dorsal and cactus, show homology to the mammalian transcription factor NF-kappa B and its inhibitor I kappa B, respectively. As in the case for I kappa B and NF-kappa B, Cactus inhibits Dorsal by retaining it in the c...
متن کاملSelf-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum.
The rel/NF-kappaB transcription factor Dorsal controls dorsoventral (DV) axis formation in Drosophila. A stable nuclear gradient of Dorsal directly regulates approximately 50 target genes. In Tribolium castaneum (Tc), a beetle with an ancestral type of embryogenesis, the Dorsal nuclear gradient is not stable, but rapidly shrinks and disappears. We find that negative feedback accounts for this d...
متن کاملA role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo.
Regulated proteolysis of Cactus, the cytoplasmic inhibitor of the Rel-related transcription factor Dorsal, is an essential step in patterning of the Drosophila embryo. Signal-induced Cactus degradation frees Dorsal for nuclear translocation on the ventral and lateral sides of the embryo, establishing zones of gene expression along the dorsoventral axis. Cactus stability is regulated by amino-te...
متن کاملThe Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults
The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 112 2 شماره
صفحات -
تاریخ انتشار 1991